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Abstract— We present algorithms, systems, and experimental
results for underwater data muling. In data muling a mobile
agent interacts with static agents to upload, download, or
transport data to a different physical location. We consider a
system comprising an Autonomous Underwater Vehicle (AUV)
and many static Underwater Sensor Nodes (USN) networked
together optically and acoustically. The AUV can locate the
static nodes using vision and hover above the static nodes
for data upload. We describe the hardware and software
architecture of this underwater system, as well as experimental
data.

Index Terms— Underwater sensor networks, AUV, vision-
based navigation, underwater robotics.

I. INTRODUCTION

We wish to develop small autonomous underwater robots
that are cooperative, adaptive, and can establish ad-hoc
underwater networks. Such robots will permit the exploration
and monitoring of underwater environments, allowing appli-
cations such as long-term monitoring of underwater habitats,
monitoring and surveillance of ports, underwater geochemical
prospecting and modelling the impact of weather, and ground
activities (such as manufacturing and agriculture) on the
water quality. Each of these applications requires long term
underwater presence over a large area and agile response
to triggers within the environment. The response might
include visitation by a sensor-rich robot, data upload, device
parameter (eg. sampling rate) change or reprogramming or
even physical repositioning of the network nodes.

To perform such tasks, there needs to exist a synergy
between mobility and communication. Sensor networks pro-
vide robots with faster and cheaper access to data beyond
their perceptual horizon. Conversely, robots can assist a
sensor network by deploying, moving and retrieving nodes,
by localizing network elements post deployment, by making
repairs or extensions as required, and acting as data mules
to relay information between disconnected sensor clusters.
The main aspects of these interactions are (1) locating and
docking with modules; (2) placing, retrieving, and organizing
modules; (3) cooperative navigation with docked AUVs; (4)
communications, and (5) data muling over a deployed sensor
node.

In this paper we describe our system, algorithms, and
experiments for underwater data muling. The data mule is an
Autonomous Underwater Vehicle (AUV) called Starbug and
the underwater sensor nodes are called Aquaflecks. Together
they form a network using two communications modalities:
acoustic communications for broadcast and event signalling,
and optical communications for high-rate local data transfer.
Given a set of deployed underwater sensor nodes functioning
as waypoints, the robot computes a tour that visits all the
nodes. The execution of the tour consists of travelling to
the next waypoint (using visual odometry), locating visually
(using color object recognition) the sensor node, establishing
optical communication with the node, and hovering while
transferring the data from the sensor (using the optical
communication system). We describe the algorithms for each
of these tasks and present experimental results with a system
consisting of Starbug and up to eight Aquaflecks conducted
in a pool.

A. Related Work

There has been much work in the fields of AUVs, their
control and navigation, underwater communications, sensors
and docking [1]. In a 2000 survey [2], it was estimated
that over 1,000 robotic underwater vehicles operate world-
wide in industry, military and research applications. A small
but growing portion of these are semi-autonomous or au-
tonomous robots.

AUVs in general face severe navigation challenges since
GPS is not available underwater. There have been three types
of navigation systems for underwater robots, which rely on
different sensors: (1) dead-reckoning and inertial navigation,
(2) acoustic, and (3) geophysical navigation [3]. Visual
feature tracking has also been employed, in particular on
the Kambara project [4]. Others have found that combining
sensor information, such as conventional long baseline acous-
tic sensing and Doppler velocity measurements, can improve
underwater navigation [5]. Optical guidance systems, which
give precise resolution at very short distances, have been used
for the AUV’s close-range homing and docking abilities. In
[6] an optical quadrant tracker locks onto a light source for
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docking, as demonstrated underwater on a SeaGrant Odyssey
IIB [7]. Alternatively, long baseline and ultra-short baseline
acoustic beacons have also been used for docking [8].

Recently there has been interest in deploying multiple
robots, in particular for oceanographic research applications.
The Serafina project [9] explores large-scale formation con-
trol issues with multiple small, agile AUVs. Gliders such
as Seaglider [10] are designed to dive to a pre-programmed
depth and resurface whilst taking scientific measurements.
These robots are capable of travelling thousands of kilometres
in a triangular depth profile. Gliders have also been used in
cooperative multi-AUV control research [11]. Such research
is motivated by collaborative oceanographic research projects
such as the Autonomous Ocean Sampling Network II [12].
It is becoming more important for the robots to be able to
assist in the deployment of, or to act as parts of, such large-
scale data-collecting networks. A small submarine [13] has
been proposed as a sensor in such a network. The robot
houses a Mote sensor and can control its own depth. In
addition, some attempts have been made to create modular
underwater robots. Inspired by eels [14] or lampreys [15],
these are smaller-scale biomimetic robots whose modules are
permanently joined in one configuration.

II. SYSTEM DESCRIPTION

A. Underwater Sensor Node: the Aquafleck

We have constructed 20 underwater sensor nodes called
Aquaflecks. Each node is built around a wireless sensor device
developed by the CSIRO called a Fleck [16], based on an
8-bit CPU with limited memory. Each node has 512kbytes
of flash memory for data storage. The Fleck has a custom
daughter board for optical communications that drives a high-
power LED and a sensitive matched photodiode. The LED
emits light in a 30 degree cone and supports a maximum
data rate of 320kbits/s at a maximum range of 2m (8m
when augmented with a lens). A low-cost/low-power acoustic
communication module using 30kHz FSK/PPM modulation
with an omnidirectional range of 20m and a data rate of
50bit/s is also used for ranging. Each node has a pressure
sensor, temperature sensor, and some have a CMUCam
camera. All this hardware is encased in a water tight bright
yellow Otter box. At the top of the box there is a 170mm
rod with an LED beacon, which an AUV can use to locate
the box, dock, and pick it up. The box also contains three
C-cells that can power the node for several days when using
continuous power, or several months on power saving modes
with minimal beacon and communications usage.

B. Starbug AUV

Starbug is a small hybrid AUV designed for operating in
highly unstructured environments [17]. An onboard PC/104
computer stack with a Crusoe processor running Linux per-
forms vehicle control as well as all image processing from

its stereo camera pairs for its powerful onboard vision-based
motion estimation system [18].

Starbug’s key specifications are: mass 26kg, length 1.2m
(folding to 0.8m for transport), maximum forward thrust 20N,
and maximum endurance of 3.5 hours (8 km at 0.7m/s) with
current lead-acid battery technology. The vehicle can be fully
actuated with six thrusters providing forward, lateral and
vertical translations as well as yaw, roll and pitch rotations.
Figure 2 shows the Starbug AUV as configured for these data
muling experiments, minus the lateral tail thruster, and with
the communication Aquafleck node located on the front of
the vehicle pointing downward.

Fig. 2. The Starbug AUV.

Vehicle control software effectively decouples the thruster
forces and allows independent control of vehicle forces and
moments in 6DOF. All the thrusters are daisy-chained on
a CANBus control network which allows for a single hull
penetration. Internal sensors such as pressure and an IMU
are also on the CANbus. Starbug has two stereo vision heads.
One looking downward for estimating sea-floor altitude and
speed as well as mapping, and the other looking forward
for obstacle avoidance. The forward cameras were not used
during this investigation.

The vehicle’s position in Cartesian coordinates is estimated
using the onboard visual motion estimation system described
in [18]. This system has demonstrated position estimation to
within 5% of distance travelled for transects of over 50m in
length.

C. Communication and networking

Our approach to communication is based on a hybrid
design which incorporates both optical and acoustic systems.
The optical system is used for short-range (up to 8m) line-
of-sight data transfer and communication between a sensor
node and an AUV acting as a data mule (with data rate of
320 kbits/s). The AUV moves through the network uploading
the stored data from the sensor nodes, and downloading
commands. The acoustic system is used to signal events and
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(a) (b)

Fig. 1. The underwater sensor node. (a) Top of the node containing the sensors and the docking rod, (b) inside showing circuitry.

transmit small amounts of data. Signalling an event allows the
AUV to move to the area of interest, and possibly redeploy
the sensor network to concentrate on some important feature
in the environment.

III. ALGORITHMS

Data muling proceeds in several stages as follows:

1) Compute a route that goes through all the nodes.
2) Select the next node to be visited.
3) Travel to the approximate location of the selected node.
4) Locate the node visually and establish communications.
5) Hover while uploading the data.
6) If not the last node, go to (2).

The next sections detail our algorithms for the control
algorithms that accomplish data muling.

A. Selecting the Next Node

Planning the sequence for data muling depends on how
much prior knowledge of the sensor locations is available.
It will be assumed that the sensor location map is made
available to the robot, however, this map may not be of high
accuracy. It is also assumed that all nodes have the same
priority in terms of visitation.

Given a map with known locations any algorithm that
approximates a solution to the travelling salesman problem
can be used. However, since the underwater robot is subject to
significant error and uncertainty while travelling underwater,
we choose a method that allows the robot to minimize the
distance to be travelled between nodes as much as possible.
This may increase the total path length to visit all the
nodes (and hence the endurance requirements of the AUV),
however, with this method the robot will accumulate less
position error and have an improved chance of finding a target
node. The robot will reset its position estimate when it finds
(and identifies) the node so we are concerned only with error
accumulation along each segment of the tour.

The next node to be visited is the closest unvisited node.
If the robot has a map of the node locations this next node is
easy to determine. In the absence of a map, a communication
protocol can establish the identify and location of this node.

B. Navigating to the Next Node

If the location of the next node is nearby, the robot
navigates using its current location estimate and visual odom-
etry [18] along with a magnetic compass to get there. If
the node is far, the robot performs a GPS based transect
whereby the vehicle periodically surfaces to obtain a GPS fix
and correct its trajectory. This is repeated until the vehicle is
within a specified radius of the desired node and then travels
on the surface using GPS to locate itself over the node. A
quick dive to the bottom reduces the navigation problem to
the previous case. Figure 3 shows the case of a GPS based
transect where the location of the first node is to the upper
right corner of the figure.

C. Locating a node

A critical part of our experiments is the ability for a vehicle
to identify and manoeuvre with respect to a node. Once a
node is located, the AUV can perform data muling or docking
and transport.

To simplify the task of locating nodes underwater we
chose a passive method where the nodes are identified based
on their color, bright yellow ABS plastic. This requires no
energy expenditure on the part of the node as opposed to
active beacons. It is also highly desirable as the Starbug AUV
already has down-looking color cameras. A typical Starbug
image of a node is shown in Fig. 4(a).

Our approach to locating the nodes by color is classical.
The color images are converted to normalized red-green
chromaticity coordinates and applied to a pre-learnt 2D
lookup table, Fig. 4(c), which maps the pixels to a binary
image, Fig. 4(b). Connected region analysis and an area
threshold determine the presence of a node. Typical results
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Fig. 3. GPS based transect to node location (circles indicate vehicle has
surfaced to correct trajectory).

for centroid and blob area are shown in the lower 3 traces
of Fig. 7. Performing this process with both the left and
right camera, we can compute an approximate range based
on the centroid disparity, and this allows for adjustment of
the area threshold. In our experiments in several different
environments nearly 200 nodes were detected successfully
using this method .

Several factors combine to make this a challenging prob-
lem. Firstly, a significant area of the top face of the node is
not yellow due to lenses, acoustic transducers and sensors.
(see Fig. 4(a)). The preferential absorption of long wave-
lengths (reds) in water causes marked color change over
quite short distances. This filtering occurs in the illumination
falling on the node, and also along the path from node
to camera. For longer term immersion, obscuration due to
biofouling by marine flora and fauna may also occur.

If the robot does not initially locate a node when arriving
at where it thinks one should be, a spiral search is initiated.
In this search, the robot navigates along a spiral centred
around the best approximate position of the Aquafleck using
visual odometry to keep track of the position and prevent
drifting due to currents. We implemented a constant pitch
spiral whose centre is located at (x0,y0) such that the desired
position at time t is:

(x(t),y(t)) = x0 + t cos(w t),y0 + t sin(w t)

where the constant w determines the pitch. The pitch is set
by the field of view of the camera (consecutive passes should
slightly overlap). This spiral is discretized and transformed
into waypoints which are given to the robot’s controller. Each
time the robot is within a specified radius of the current
waypoint, the next waypoint is set. If the node is not found
after a specified amount of time, the robot surfaces, re-

(a) Captured color image

(b) Segmented image

(c) R-G lookup table

Fig. 4. AUV image processing.

calibrates its position, and tries again.
This spiral search method was found to be effective in

locating “lost” nodes. Figure 5 shows the results of a vision-
based spiral search in the presence of a significant water
current from left to right. Here the robot’s initial starting
position meant that it missed the node by approximately
1.5m before the spiral was initiated. This spiral took 110s
to complete.

D. Data Muling: Hovering

Once a node enters the vehicle’s field of view, its current
position is recorded and the robot switches to a station
keeping mode while attempting to signal the node and upload
data. The position of the node is recorded since, due to the
relatively narrow field of view of the cameras, it is possible
for the vehicle to lose the node whilst trying to stop or
turn towards the node. Therefore, whilst the node is in view,
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Fig. 5. Spiral search to locate node (solid) actual, (dashed) demand.

the station keeping algorithm attempts to keep the node in
the image centre. However, if the node is temporarily lost
from view, the vehicle servos toward the last known recorded
position. If the node fails to respond, or when the data has
been downloaded, the vehicle commences motion toward the
next node in the tour.

For the vehicle in its full configuration of 6-thrusters the
station keeping is a straightforward 2D visual-servo system.
Image errors are mapped to surge and sway forces which
are converted to velocities by hydrodynamic damping. For
these experiments we were missing the tail thruster which
is the only one that provides a lateral force, thus making
this degree of freedom uncontrollable. Therefore, we require
non-holonomic control to maintain station. To determine the
vehicle control inputs, it is assumed the target node is at
a known coordinate (xt ,yt ) and the vehicle’s heading (ψ) is
estimated by on-board compass. Further, we have a good
estimate of the pivoting radius (Rcam) from the camera image
centre (x,y) to the vehicles centre-of-gravity (xc,yc) as shown
in Fig. 6.

With the camera image centre coordinates being a direct
output of the visual motion estimation algorithm (x,y), the
centre-of gravity coordinates are given by

(xc , yc) = (x−Rcam cosψ , y−Rcam sinψ) (1)

The target’s bearing relative to the vehicle’s forward axis (ψt)
can be determined by

ψt = tan−1
(

xt − xc

yt − yc

)
−ψ (2)

where −π < ψt < π.
Vehicle control is achieved by firstly performing a pure

yaw rotation which will turn the vehicle towards the tar-

Fig. 6. Coordinate system used for object tracking control.

get. However, after rotation there may be some residual x-
translation (Δx) required to centre the target in the image.
Therefore, Δx is determined from subtracting the pivoting
radius from the distance from the centre-of-gravity to the
target such that

Δx =
√

(xc − xt)
2 +(yc − yt)

2 −Rcam (3)

As the vehicle can generally move forward much more
quickly than it can yaw, it is desired to scale back the forward
control input if large yaw angles are required. Therefore, a
scaling factor (ηx) is applied to the displacement demand
such that

ηx =
ψmax −αx

ψmax
(4)

where ψmax is a maximum yaw angle to target at which zero
forward demand is desired and αx = |ψt | which is bounded
by (0 ≤ αx ≤ ψt ). Therefore, the control inputs for forward
velocity (or displacement) and yaw are given respectively by

uxdmd = KxηxΔx (5)

uψdmd = Kψψt (6)

where Kx and Kψ are control constants of proportionality.
Figure 7 shows the vehicle state for a typical node ac-

quisition and station holding operation. The top two traces
show the vehicle’s visual odometry-based position estimate,
the next shows the identified target area, with the last two
traces showing the target location in the image plane. As
the communication node attached to the AUV is not co-
located with the camera, in this experiment the node was
being kept at image coordinates (-0.1,0) to better locate the
communication node directly above the target. We can see
that the vehicle maintains a good quality lock on the target.
At t = 250s a significant disturbance was introduced to the
vehicle so that it lost the target but quickly reacquired it,
which clearly shows the robustness of the controller and
vision system.
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Fig. 7. Vehicle state during visual servoing for typical hover.

For movement between sensor nodes, the same hovering
control procedure is applied, however, a pure pursuit strategy
is adopted whereby a pseudo target position (xt ,yt) is incre-
mented at a desired speed toward the desired node position.

E. Data Muling: Communication

Once the Aquafleck is identified, a protocol is executed
to establish communication for data transmission. The robot
first enquires about the amount of data to upload from the
node. The robot then requests data in 239 byte segments. If a
segment is not received within a specified period, the robots
asks for it again.

Communication is achieved with optical signalling at a
data rate of 320 kbits/sec with a stateless protocol and
no acknowledgements. The robot can request: the node
ID, the node’s capabilities (camera, pressure, temperature),
the amount of logged data stored in flash memory, and a
specific part of the data (specified by address and length).
The Aquafleck will respond to all these queries with the
information requested.

When data transmission is completed and with the node
still in the robot’s camera view, the visual odometry is reset
to the known location of the current node, and the next node
in the sequence is identified.

IV. EXPERIMENTS

A joint CSIRO and MIT experimental evaluation of the
proposed data muling strategy using vision-based node lo-
calisation and vehicle control was conducted in the CSIRO
AUV test facility. Figure 8 shows the AUV in the pool whilst
data muling.

Fig. 8. The Starbug AUV during data muling experiments.

Three sensor nodes were placed in a non-symmetric pattern
with each node’s approximate Cartesian position recorded as
an a priori map. These positions, along with the node iden-
tification number, are listed in Table I (note the y direction
is aligned with magnetic North).

Node ID x (m) y (m)

1 1.3 1.2
2 2.8 2.0
3 1.6 3.5

TABLE I

APPROXIMATE SENSOR NODE LOCATION

To verify the performance of the proposed system, a series
of experiments were performed where the AUV’s starting
position was varied throughout the pool. In all experiments,
the AUV took its starting location as the origin and using its
vision-based position estimate moves in the direction of the
map coordinates of Node 1 in an effort to locate the node.
If no node is discovered at these coordinates, an increasing
spiral search routine is initiated until a node is found. This
means that Node 1 is not necessarily the first node discovered
and the muling strategy had then to direct the AUV to visit
all the other nodes out of order as described in Section III-A.

Figure 9(a) shows the AUV’s vision-estimated position
during the ideal case of when the starting location is the
almost the same as the map origin. The diamonds indicate
the approximate location of the nodes from Table I. As can
be seen, the vision-based position estimate coincides well
with the map-based node position. Once a node is found, the

2096

Authorized licensed use limited to: MIT Libraries. Downloaded on November 5, 2008 at 12:27 from IEEE Xplore.  Restrictions apply.



vision system resets its position estimate to that of the node’s
map coordinates as shown by the position estimate jumps in
the vicinity of the node. Figure 9(b) shows the corrected
trajectory using the first node’s position to back calculate the
AUV’s initial start position.
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(b) Corrected AUV position estimate

Fig. 9. Vision-estimated vehicle position and node position with AUV
starting location at map origin. Node visitation in ascending order.

Figure 10 shows the results of a second scenario where the
AUV’s starting position was such that it was guided toward
the middle of the node cluster and a search routine had
to be initiated. Figure 10(a) shows the vehicle’s estimated
position for control. The vision-based position “reset” is
clearly seen once the node has been found. Figure 10(b)
shows the corrected trajectory using the first found node’s
position to back calculate the AUV’s initial start position. In
this instance, the nodes are visited in order.

The final scenario consists of the AUV being started in
a position which is not the map origin, and the first node
found is not Node 1. Figure 11(a) shows the AUV’s position
estimate during the search when it believes that it started
at the map origin and subsequent resetting of the vehicle’s
position based on the first found node. Figure 11(b) shows
the corrected trajectory showing the true vehicle position
and actual starting location during the experiment. The spiral
search can be clearly seen before locating Node 2.
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Fig. 10. Vision-estimated vehicle position and node position with AUV
starting location offset from map origin. Node visitation in ascending order.

In total, the AUV successfully completed over 46 muling
missions locating up to 8 nodes per mission in the test tank.
These missions involved visiting the nodes in order, out of
order, and through spiral searches to locate the nodes.

V. CONCLUSIONS

We have described a system for collecting data from
an underwater sensor network using an AUV as a data
mule. This is a one example of many useful robot and
sensor-network interactions that we are currently studying —
others include network deployment, retrieval, post deploy-
ment localization, and network repairs or extensions. Such
underwater networks can perform many useful tasks such as
long-term environmental monitoring or surveillance.

We present algorithms for path planning, navigation and
hovering while uploading data. The approach has been tested
experimentally with up to eight custom built underwater sen-
sor nodes and an AUV with visual navigation capability. Our
future work will integrate an acoustic broadcast capability to
signal events that require AUV intervention, and on optimal
coverage of the sensor network with multiple AUVs.
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Fig. 11. Vision-estimated vehicle position and node position with AUV
starting location offset from map origin. Node visitation out of order.
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